Subscribe to Eye2    Eye2 Archives    VisionMonday

eye2 Logo
  January 23, 2013
Search
Spec-techular

Augmented Reality Contact Features Curved LCD

By Eye² Staff


The Centre of Microsystems Technology (CMST), an affiliate of IMEC (Interuniversity Microelectronics Centre), a micro- and nanoelectronics research center headquartered in Leuven, Belgium, announced last month it has developed an innovative spherical curved LCD display which can be embedded in contact lenses. The first step toward fully pixelated contact lens displays, this achievement has potential wide-spread applications in medical and cosmetic domains, according to CMST.

Unlike LED-based contact lens displays, which are limited to a few small pixels, IMEC's innovative LCD-based technology permits the use of the entire display surface. By adapting the patterning process of the conductive layer, this technology enables applications with a broad range of pixel number and sizes, such as a one pixel, fully covered contact lens acting as adaptable sunglasses, or a highly pixelated contact lens display. The first prototype presented contains a patterned dollar sign, depicting the many cartoons that feature people or figures with dollars in their eyes. It can only display rudimentary patterns, similar to an electronic pocket calculator. In the future, the researchers envision fully autonomous electronic contact lenses embedded with this display. These next-generation solutions could be used for medical purposes, for example to control the light transmission toward the retina in case of a damaged iris, or for cosmetic purposes such as an iris with a tunable color, CMST said. In the future, the display could also function as a head-up display, superimposing an image onto the user's normal view. However, there are still hurdles to overcome for broader consumer and civilian implementation, CMST noted.

"Normally, flexible displays using liquid crystal cells are not designed to be formed into a new shape, especially not a spherical one. Thus, the main challenge was to create a very thin, spherically curved substrate with active layers that could withstand the extreme molding processes," said Jelle De Smet, the main researcher on the project. "Moreover, since we had to use very thin polymer films, their influence on the smoothness of the display had to be studied in detail. By using new kinds of conductive polymers and integrating them into a smooth spherical cell, we were able to fabricate a new LCD-based contact lens display." Prof. Herbert De Smet, who is supervising CMST's display group, added further comments: "Now that we have established the basic technology, we can start working towards real applications, possibly available in only a few years' time.



Back to Newsletter




ALSO IN THIS EDITION... COMMENTS

HEADS UP:

Vision Technologies Shine at CES 2013

SPEC-TECHULAR:

Augmented Reality Contact Features Curved LCD

SIGHT SEEING:

eSight Debuts 'Intelligent Eyewear' for Low Vision Patients

NEXT DIMENSION:

South Korean Researchers Make Strides With Glasses-Free 3D

VM Current Issue VM Current Issue

Copyright © 2014 VisionMonday. All rights reserved.
Eye2 is published by Jobson Medical Information LLC, 100 Avenue of Americas, New York, NY 10013.
To subscribe to other JMI newsletters or to manage your subscription, click here.